※上記の広告は60日以上更新のないWIKIに表示されています。更新することで広告が下部へ移動します。

確率 (Probability)


全事象において、条件 A が起こりうる確率を P(A) とする。
この時、A ∩ B となる確率は、P(A ∩ B) である。

P(A ∩ B) = 0 の場合、条件 A と B は互いに 排反事象 であると言える。
P(A) + P(B) = 1 の場合、条件 A と B は互いに 余事象 であると言える。

条件 A のうち、B が満たされる確率は、P(B | A) と表す。
この時、P(B | A) = P(A ∩ B) / P(A) となる。
∴ P(A ∩ B) = P(B | A) * P(A) = P(A | B) * P(B)

眼鏡をかけている人を A、女性を B とする。
  • 眼鏡をかけている人のうち女性の割合 : P(B | A) = P(A ∩ B) / P(A)
  • 女性のうち眼鏡をかけている人の割合 : P(A | B) = P(A ∩ B) / P(B)
  • 眼鏡をかけている人のうち男性の割合 : P(A | B') = P(A ∩ B') / P(B')

ある電機小売店の店主は A、B、C のメーカーから電球を仕入れている。
A から 30%、B から 45%、C から 25% の電球を仕入れているが、
このうち、A と B の電球には 1% の不良品があり、C の電球には 2% の不良品がある。
いま、電球 1 個を選んだ時にそれが不良品だった時に、C の電球である確率はいくらか。
電球が不良品である確率を F とすると、
  • P(F) = P(A ∩ F) + P(B ∩ F) + P(C ∩ F)
  • P(A) = 0.3, P(B) = 0.45, P(C) = 0.25
  • P(F | A) = 0.01, P(F | B) = 0.01, P(F | C) = 0.02
求めるべき確率は、不良品のうち C である割合なので P(C | F) となる。
P(C | F)
= P(C ∩ F) / P(F)
= P(C ∩ F) / P(A ∩ F) + P(B ∩ F) + P(C ∩ F)
= (P(F | C) * P(C)) / {P(F | A) * P(A) + P(F | B) * P(B) + P(F | C) * P(C)}
= (0.02 * 0.25) / (0.01 * 0.3 + 0.01 * 0.45 + 0.02 * 0.25)
= 0.4 = 40%

袋の中に赤玉 4 個,白玉 3 個,黒玉 5 個があり、
3 個の玉を取り出すとするとき次のものを求めよ。
1) 3 つとも赤玉である確率
2) 3 つとも同色である確率
  • 全事象 : 12 C 3 = 220 (通り)
1) 3 つとも赤玉である場合 : 4 C 3 = 4 (通り)
  • 4 C 3 / 12 C 3 = 1 / 55 = 1.8%
2) 3 つとも同色である場合 : 4 C 3 + 3 C 3 + 5 C 3 = 15 (通り)
  • ∴ ( 4 C 3 + 3 C 3 + 5 C 3 ) / 12 C 3 = 3 / 44 = 6.8%

問題 1

トランプ52枚から13枚を抜き取ったとき8枚がスペードである確率は?
  • 13 C 8 * 39 C 5 / 52 C 13 = 0.117%

トランプ52枚から13枚を抜き取ったときx枚がスペードである確率P(x)は?
  • P(x) = 13 C x * 39 C (13-x) / 52 C 13

袋の中に赤玉4個,白玉3個,黒玉5個がある。3個の玉を取り出してすべて異色である確率は?
  • ( 4 C 1 * 3 C 1 * 5 C 1 ) / 12 C 3 = 27.27%

袋の中に赤玉4個,白玉3個,黒玉5個がある。3個の玉を取り出すときすべて色の組合せの確率P(r,w,b)は?
  • P(r,w,b) = ( 4 C r * 3 C w * 5 C b ) / 12 C 3

問題 2

10人の誕生日がダブる確率は?
  • 1 - 365 P 10 / 365 10 = 11.69%

x人の誕生日がダブる確率P(x)は?
  • P(x) = 1 - 365 P x / 365 x

2択問題10題をランダムに答えて60点以上とれる確率は?
  • ( 10 C 6 + 10 C 7 + 10 C 8 + 10 C 9 + 10 C 10 ) / 2 10 = 37.70%

x 択問題 y 題をランダムに答えて60点以上とれる確率 P は?

問題 3

A,B,C 3人が受験した。これまでの成績からして彼らが合格する確率はそれぞれ80%,50%、30%である。次の確率を求めよ。
1) 3人とも合格する確率
2) 2人だけが合格する確率
3) 3人のうち少なくとも1人は合格する確率
  • 1) 3 人合格する確率 : 0.8 * 0.5 * 0.3 = 12%
  • 2) 2 人だけ合格する確率 :
P(A ∩ B ∩ C') = 0.8 * 0.5 * (1 - 0.3)
P(A ∩ B' ∩ C) = 0.8 * (1 - 0.5) * 0.3
P(A' ∩ B ∩ C) = (1 - 0.8) * 0.5 * 0.3
P(A ∩ B ∩ C') + P(A ∩ B' ∩ C) + P(A' ∩ B ∩ C) = 43%
  • 3) 3 人のうち少なくとも 1 人は合格する確率 : 1 - P(A' ∩ B' ∩ C')
P(A' ∩ B' ∩ C') = (1 - 0.8) * (1 - 0.5) * (1 - 0.3)
1 - P(A' ∩ B' ∩ C') = 93%



統計処理

平均値 (mean)

m = Σx k / n [合計 / 個数]
Excel 関数 : AVERAGE

中央値 (median)

ソートした時に中央に位置する値
Excel 関数 : MEDIAN

分散 (variance)

平均値との差の二乗の総和の平均
Σ(x k -m) 2 / n = Σx k 2 / n - m 2
Excel 関数 : VARP

標準偏差 (Standard Deviation)

分散の平方根
m ± σ
Excel 関数 : STDEV = m + σ、STDEVP = m - σ

頻度分布

度数分布表
Excel 関数 : FREQUENCY

最頻値
Excel 関数 : MODE

色々な平均

相加平均 : m = (a + b) / 2
相乗平均 : m = (a * b) ^ (1/2)
調和平均 : 2 / m = 1 / a + 1 / b
相加平均 ≧ 相乗平均 ≧ 調和平均

片道 10 km の道のりを、行きは時速 10 km、帰りは時速 5 km で往復した場合の平均速度を求めよ。
  • m = 20 / (10 / 10 + 10 / 5) = 6.7 (km/h)

偏差値

平均を 50、標準偏差を 10 に調整したもので
素点 x では 50 + 10(x - m) / σ となります。

共分散

Σ(x k - m x )(y k - m y ) / n
Excel 関数 : COVAR

相関係数

共分散 / (σ x * σ y )
Excel 関数 : CORREL




二項分布


サイコロを 10 回振って 1 の目が 8 回出る確率は?
  • p = 1/6
  • P = p 8 (1-p) 2 10 C 8
Excel 関数 : BINOMDIST
  • 試行回数 n, 発生回数 r, 発生確率 p
  • 一般式 : P(n) = p r (1-p) n-r n C r

ポアソン分布 (Poisson Distribution)

n や p は分からないが、統計的に np が分かっている場合
  • 交通事故の死者数が 0 である確率
  • 1 ページあたりの誤植が k 個存在する確率
  • 緊急入院者が k 人である確率

np = λ とすると、

P(k) = e λ k / k!
(e はネイピア数)
Excel 関数 : POISSON

超幾何分布


赤白の玉 N 個 (うち n 個が赤) から m 個取り出して r 個が赤である確率
[0 ≦ r ≦ min(m, n)]
  • P(r)= n C rN - n C m - r / N C m
Excel 関数 : HYPGEOMDIST

実践

日本女子プロ野球における、全 40 試合の得点数から、
各チームの勝率をポアソン分布を用いて計算してみました。

  • 兵庫スイングスマイリーズ : 合計得点 232 点 → 平均 5.8 点 ∴ λ S = 5.8
  • 京都アストドリームス : 合計得点 156 点 → 平均 3.9 点 ∴ λ D = 3.9

これにより、例えば兵庫スイングスマイリーズが 4 点を取る確率 P S は、
  • P S (4) = e -5.8 * 5.8 4 / 4! = 14.28 %
また、京都アストドリームスが 4 点を取る確率 P D は、
  • P D (4) = e -3.9 * 3.9 4 / 4! = 19.51 %

ちなみに、ポアソン分布で計算すると、各チームで最も確率が高いのは
  • 兵庫スイングスマイリーズ : 5 点 (16.56 %)
  • 京都アストドリームス : 3 点 (20.01 %)
となりました。

さて、各チームの勝率を求めるには下記のような計算を行います。

京都アストドリームスが勝つ確率

  • 京都 AD が 1 点の時で、兵庫 SS が 0 点の場合
  • 京都 AD が 2 点の時で、兵庫 SS が 0 点または 1 点の場合
  • 京都 AD が 3 点の時で、兵庫 SS が 0 点または 1 点または 2 点の場合
  • (以下略)
京都アストドリームスが勝つ確率 P DW を求めるには、
上記をすべて加算すれば良いことになります。
P DW = P D (1) * P S (0) + P D (2) * (P S (0) + P S (1)) + P D (3) * (P S (0) + P S (1) + P S (2)) + …


実際には、k が 20 以上の時は P D (k) と P S (k) はほとんど 0 になります。
よって、計算式は下記になります。

= 21.83 %

兵庫スイングスマイリーズが勝つ確率

= 67.30 %

  • 兵庫スイングスマイリーズが勝つ確率 : 67.30 %
  • 京都アストドリームスが勝つ確率 : 21.83 %
  • 両チーム引き分けとなる確率 : 10.87 %